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Abstract. It is argued that powders have so many particles per unit volume that they can be 
treated in a manner similar to conventional liquids. They have an entropy S(V,  N ) ,  but as 
energy is not important the place of temperature dE/dSis taken by dV/aS. Equationscapable 
of giving plug flow are derived. It is argued that highly viscous liquids approaching the glass 
transition can have a structural order that differs from that of equilibrium at the ambient 
temperature, defined by the other majority degrees of freedom. The ideas from powder 
theory enable one to derive the dependence of the glass temperature on the cooling rate. 

1. Introduction 

Powders are normally assemblies of a very large number of grains-numbers that imply 
that there should be well defined laws for their equations of flow and of state. Many 
powders do indeed flow like liquids and show well defined rules for mixing and demixing 
of different species. 

Thermal properties are usually of little importance, i.e. temperature is a minor 
feature. The dominant physical feature is the absence of a definite density, since frictional 
effects are usually dominant and the density can be raised or lowered within well 
established limits by shaking or compressing. 

This dilatancy of powder should be describable by some analogue of temperature in 
thermal systems, i.e., just as a thermal system has any energy (within limits) and is 
therefore labelled by a temperature, we argue that a powder is characterized by a 
compactness which will be shown to be X = dV/dS in analogy to T = dE/dS. Notice that 
the entropy S ( N ,  V )  is a well defined quantity, the logarithm of the number of ways the 
grains can be assembled to fill the volume V ,  so Xis  well defined. 

The argument for the central position of X is given in section 2 where it is argued 
that whereas a flowing liquid is described by p,  U ,  T ,  a flowing powder is described by 
p ,  U ,  X, and some tentative equations of motion are offered there. 

The relationship with high viscosity liquids comes about in the following way. When 
a liquid is cooled towards the glass temperature its configurational structure departs 
from equilibrium according to the cooling rate. It is fruitful in theoretical physics to look 
at extreme cases, and an extreme version of disequilibrium is a powder. In such a case 
a variety of configurational orders are possible, characterized by dV/dS. We argue that 
the behaviour of the liquid rapidly cooled towards the glass can be described by the 
deviation of dV/dS from its equilibrium value. Although this idea is very close to the 
well known idea of having two temperatures in a system, it will be shown to have some 
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advantages. Finally, it will be shown how the increasing necessity for cooperation to 
move from one configuration to another leads to the Vogel-Fulcher form for the final 
behaviour of the viscosity at the onset of the glass. 

2. Compactivity 

As a prologue to studying powders, consider two cases of hard spheres of different 
specification with no forces other than the infinitely hard repulsions in thermal contact. 
The free energy of each gas is purely entropic, ST, and the pressures on their boundaries 
equilibrate to P1 = P z ;  i.e. 

T(eS/av), = T(aS/av)* 3 (av/as), = (dV/dS)*. 

It is now argued that this result is much more general than that for the case involving 
temperature, and for a powder, where Tis negligible, there is still an entropy 

S/A = 6(V - W) d(al1) J 
(where W is the function of all the coordinates and orientation of the grains) which, 
given the volume, is the direct analogue of 

S / k  = 6 ( E  - H )  d(al1) i 
since, just ask  conveniently converts the pure number entropy into an energy, A converts 
the pure number entropy of the powder into a volume. As usual it is possible to go to 
the canonical ensemble and to introduce an effective volume Y such that 

- Y/AX = log e-(w/Ax) d(a1l) i 
V = Y - XdY/dXbeingtheanalogueof E = F - TdF/aT. The analogueof temperature 
T = aE/dS is X = aV/aS, an intensive quantity that has to be shared by powders in 
juxtaposition if their boundary is not disturbed by common extensive motion, e.g. by 
shaking the juxtaposed powders. Simple examples of this concept have been given 
(Edwards 1988, Edwards and Oakeshott 1989, Mehta and Edwards 1989,1990). Using 
simple models of Win terms of coordination numbers the mixing of powders can similarly 
be described by Bragg-Williams-type theories. We call X the compactivity. 

The great interest in powder lies, however, in dynamic rather than static properties. 
The general equations must take the form 

dp/dt + div(p U )  = 0 

d u , / d t =  (U . V ) U ,  + (Z/p)(aP,/ax,) = F,  

(2.1) 

( 2 . 2 )  

axla2 + (U * V ) X  + q(x) + K ( t ,  x) = 0 

[tij = i ( a u  ,/axj + du,/dx,)] 
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where pij  is the stress, F the applied force, q ( x )  represents the response of the 
compactivity in the absence of a strain rate and K the effect of the strain rate. In the next 
section we make some estimates ofp,  F ,  g, and K .  

3. The equations of motion 

The first requirement is to establish the constitutive equation for the powder which we 
can as usual consider as the reaction of the system to the external forces and to the 
motion. There are two forms of the viscosity and the coefficients of viscosity will be 
functions of X, i.e. 

aP 1, lax, = @P 1 (x>/dx, a U I lax, + (44 ( W a x ,  ) a U I lax, .  (3.1) 

Now X = 0 corresponds to the closest packing of the powder and X = to the lowest- 
density packing. Regarding the powder as having a surrounding fluid, which could be 
air (but it is mathematically simpler if it is a normal liquid), one can postulate that 

P l ( 4  = ClIlfl(4 + Pl0 

P 2 ( 9  = ClZ/f*(X) + P20 

(3.2) 

(3.3) 
where f l ,  f 2 + =  0 as X-+ 0 since the closest packing has to have infinite viscosity, The 
usual fitting of such functions suggests a power law, but we adopt the simplest form, 
which is that f l  and f 2  = X .  The normal liquid value of p20 is zero as the liquid is 
incompressible. The physical implication of these forms is that shearing a powder will 
tend to increase X and reduce the viscosity until a point is reached where it is no longer 
valid to describe the system as a powder with liquid or gas between the grains, since it 
has become a suspension. 

The rest of the stress tensor which is not dependent on the motion is the response to 
the external force. A powder as such cannot exert a pressure in the normal way as there 
is no thermal motion, but it can resist an external applied force. Thus if a force Fe,, is 
applied, there is part of pL, that is a response to Fe,, and which we can designate 
F,,,(X, Fext). The simplest form would be to write it as 

where one can expect R to be 1 when the powder perfectly resists compression (but then 
R will rise until it vanishes as x + x ) .  The crudest form for R would be a function like 

R = 1/(1 + ax). (3.5) 
The equation for x will reflect both the way in which the powder responds to an initial 
condition that is not stable and to the effect of stress. For temperature one has the 
standard form for a normal liquid: 

dT/dt + U * V T  - K V ~ T  = p ~ o ( P i l i l ,  - P i l i , , )  (3.6) 
where K is the thermal conductivity and the right-hand side is the viscosity heating. 

There is no analogue of diffusion, but a powder disturbed by shear flow can be 
expected to tend to a state of smaller X when the shear is removed. The precise way in 
which this happens needs a molecular model, but the crudest argument would be to 
designate some X1 such that if the strain rate goes to zero the powder compresses to X1. 
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In general X I  must be history dependent but this is quite hard to describe confidently so 
we accept the crudest version: 

ax/& + (U * vx) + y ( X  - X,) = [t] 

a@..& 11 11 + bt..P.. I! 

(3.7) 

(3.8) 

The obvious right-hand side would be 

but I cannot see why a linear term Pi; cannot be present, for the arguments in fluid 
dynamics do not apply here. Of course the viscous term in hydrodynamics is derivable 
from the conservation of energy, so a resolution of the presence or absence of the linear 
term awaits a microscopic derivation. Thus our phenomenological suggestions are: 

ap/at + v * (pu)  = 0 

ax/& + U VX + y(X - X,) = c t i i  + a l , t j j  + b t . . t  (1 11 

a U ; / d t  + (U * V)j - (a/axj)(p(]l + pJx) av;/ax, (3.9) 

P, = 4(aU,/ax; + d U i / d X j ) .  

-(a/axj> ( ~ 0 2  + ~ 2 / x )  aui/axl = F c x t ( a X / ( l  + ax)) (3.10) 

(3.11) 

Crude as these equations are, they show interesting features: the stress is not monotonic 
in the strain rate, so they show plug flow, i.e. the coexistence of two strain rates in say a 
pipe flow. However, I will use the rest of my paper to consider some speculations (i) 
about the form of the equations and (ii) about the application of the ideas in the study 
of very viscous liquids as the glass transition is approached. 

4. Refinement of the equations 

These naturally arise when models are considered. The basic equations themselves can 
be derived from the underlying Boltzmann equations, but these are unconventional. 
For example, suppose one considered the first approximation to a basic description 
to be a coordination number, i.e. each grain to have c neighbours. Suppose there 
are n, such grains and consider the rearrangements as a kind of chemical reaction. 
{cl}+ {c,’}, with the analogue of the Boltzmann equation U + u 1  -+ U ’  + U ;  im- 
PlYingf(u)f(ul) - f ( U ’ > f ( U ; >  to be 

rIn(c,) - rIn(c;) .  

This is all very complicated, but the optimist can make progress, for example, by noting 
that c is always rather large and that a Fokker-Planck approach is possible. We have 
made some progress in this direction. It is an interesting problem because the same 
difficulty arises with foams and with the flow of packed soft objects. 

Aspects of the equations appear in the current literature. For example, one can use 
the literature of the hard-sphere gas to find how dV/d.S behaves as the density approaches 
the maximum random close-packed packing. There is also much literature on the 
behaviour of F (Schofield and Wroth 1968). A characteristic of the terminal behaviour 
of variables approaching the X-, 0 limit is of the Vogel-Fulcher type. For example we 
can expect F(l - R )  as a function of X to start at zero and rise from a cusp at A / F  to a 
terminal value of X. The X at which the reaction is total depends on F ,  perhaps like 

R = [l - exp( -B/(FX - A ) ) ]  O(X> A/F).  (4.1) 

A similar VF cusp appears in the viscosity when in the terminal region, except more and 
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more elaborate cooperations are required for any movement to take place; see, e.g. ,  
Edwards and Vilgis (1986). A final improvement arises in the compactivity equation 
when attempts are made to give a microscopic derivation because the crude y(X - X , )  
must really involve at least two effects; the relaxation time of the system as a function 
of X and the ‘Boltzmann’ increase and decrease of X due to rearrangements in the 
system. This is the topic of the next section. 

5. An application to highly viscous liquids 

When a liquid is cooled quickly the glass temperature depends on the cooling rate. 
Experimental study shows that there is little that is simple about this process but it is 
always worth building an extreme model, to get oriented for a better theory. So, suppose 
the orientational freedoms of the liquid contribute little to the thermal energy so that 
the temperature can still be defined and measured, this coming from vibrational and 
electronic degrees of freedom. It then follows that the orientational entropy can be 
defined as for a powder, and a value of dV/aS will exist for this order which is not the 
same as the overall TIP. 

Let us define Z = (dV/dS) - (dV/dS),,. For a rapidly cooled liquid Z is non-zero, 
but an equilibrium liquid will have Z = 0. We now argue that Z is rather like the X of 
our powder in that there will be some equation which relates Z to the cooling rate t ,  t = 
0 + Z = 0. Thus if one argues that there is some Z-dependent relaxation time, one can 
expect 

dZ/d ( t / t o )  = effects generating Z - effects reducing Z. 

to = ( a  - pZ). 

(5.1) 

(5 .2 )  

to will have a natural equilibrium value decreased by 2, e.g. 

Effects generating Z must depend on, and be even in, 2, say pZ2, whereas effects 
reducing Z are plausibly proportional to Z itself. Thus we can guess a form 

dZ/dt = (a - p Z ) ( t 2  - EZ). (5 .3)  
The cessation of motion Z = 0 corresponds to the glass transition and this equation 
(Edwards 1989) does indeed give T,( t ) .  The experimental dependence is logarithmic 
and this suggests that the above equation is too simple and must again be of the VF type, 
plausibly enough. Finally the viscosity of the liquid can be constructed as in section 3, 
with Z playing the part of X ,  and in this way a viscosity which depends on the cooling 
rate results. 
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